
Lecture 1 Slide 1PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 1

Introduction to
Instruction Architectures &

Compiler

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
E-mail: p.cheung@imperial.ac.uk

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/

Lecture 1 Slide 2PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Intended learning outcomes

v Theory
§ How pipelined CPUs with caches process instructions (Autumn)

§ How a compiler turns code into instructions (Autumn)

§ The hardware-software interface between compiler and CPUs (A+S)

v Practise
§ Creating a CPU in System Verilog (Autumn)

§ Creating a compiler in C++ (Spring)

v Skills
§ Improved knowledge of RTL languages and tools (Autumn)

§ Increased proficiency in C++ and software (Spring)

Lecture 1 Slide 3PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Course Instructors & TAs

Peter Cheung
(Autumn)

John Wickerson
(Spring)

Ryan Voecks
(UTA –EIE3)

Petr Olsan
(UTA –EIE3)

Guanxi Lu
(UTA –EIE3)

William Huynh
(UTA –EIE3)

Hrishikesh Venkatesh
(UTA –EIE3)

Adam Ali
(UTA –EIE3)

Haocheng Fan
(UTA –EIE3)

Tianqi Hu
(UTA –EIE3)

Lecture 1 Slide 4PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Learning approach for Instruction
Architecture (Autumn Term)

v Lectures: ~ 2 hours per week (Tuesday 4pm – 6pm)
§ In person, cover theoretical stuff + introduction to Lab/Project

v Reading: ~ 2-3 hours per week (untimetabled)
§ Sections to read given in lecture

v Supervised Lab (2 - 4 hours Thursday and/or Friday)
§ Pair-based learning with Lab instructions in first half of term

§ Team-based project to design RISC-V processor in 2nd half of term

§ Team working in groups of 4, but individually assessed

§ Lab Sessions also serve as Tutorial Sessions – you can ask staff or
UTA questions about course materials

§ Complete your partner declaration survey here:

https://forms.office.com/e/TtBK3asFr4

https://forms.office.com/e/TtBK3asFr4

Lecture 1 Slide 5PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Autumn : Course Textbook

v Computer Organization and Design RISC-V Edition, Patterson and
Hennessy (~£77), electronic copy available at:

https://library-
search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591

v Digital Design and Computer Architecture (RISC-V Edition)
by Sarah Harris and David Harris.

https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=89
94656&isbn=9780128200650

https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650

Lecture 1 Slide 6PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Assessment – Entire module (10 ECTS)

v The course uses three modes of assessment:

v Labs (20% or 2 ECTS):
§ Autumn (5%): Mid-term quiz on Lab experiments

§ Spring (5%): Tools for building compilers

v Coursework (40% or 4 ECTS):
§ Autumn (25%): building a working RISC-V processor

§ Spring (25%): building a working C compiler

v Final exam (40% or 4 ECTS):
§ Assessed knowledge of CPUs and compilers

§ Questions cover both topics of architecture and compiler

Lecture 1 Slide 7PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Labs and coursework for Autumn Term

v First half :
§ 4 Lab Sessions to teach digital design with SystemVerilog

§ Work in pairs – you choose your own lab partner

§ Expect to keep a logbook on git

v Mid-term : assessment of lab (5%)
§ Online quiz on Lab 0 to Lab 3 – multiple choice + evidence on git

v Second half : assessment on project (25%)
§ Work in teams of 4 from two pairs (I choose)

§ Design a working RISC-V processor in SystemVerilog

§ Four tasks already partitioned – you allocate responsibilities

§ Assessed both as a team and individually (details later)

Lecture 1 Slide 8PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Overview on

Digital Hardware Design

Lecture 1 Slide 9PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

How to describe/specify digital circuits?

Schematic diagram
& gates

Truth table

Boolean equation

Hardware Description Language
(HDL)

Timing Diagram

Lecture 1 Slide 10PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic digital building blocks

Primitive Logic Gates Multiplexers Arithmetic circuits

Decoders

Flipflops and Registers

Encoders

Lecture 1 Slide 11PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Cause & Effect

Propagation Delay:
The time delay between a cause (an input changing) and its effect (an output
changing), assuming output load capacitance of 30pF.

Lecture 1 Slide 12PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinatorial and sequential logic

Lecture 1 Slide 13PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

D-Flipflop (1)

Lecture 1 Slide 14PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

D-Flipflop (2)

1

Lecture 1 Slide 15PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Setup and Hold Times

Setup Time: DATA must reach its new value at least tS before the CLOCK edge.

Hold Time: DATA must be held constant for at least tH after the CLOCK edge.

• Typical values for a register: tS = 5 ns, tH =3 ns (discrete logic/ I/O circuit)
tS = -50ps, tH = 0.2 ns (internal LE)

• The setup and hold times define a window around each CLOCK edge within which
the DATA must not change.

• If these requirements are not met, the Q output may oscillate for many nanoseconds
before settling to a stable value.

The DATA input to a flipflop or register must not change at the same
time as the CLOCK.

Lecture 1 Slide 16PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Design Hierarchy

Lecture 1 Slide 17PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Overview on

Instruction Set Architecture (ISA)

Lecture 1 Slide 18PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Eight Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Use Abstraction to Simplify Design
3. Make the Common Case Fast (RISC philosophy)
4. Performance via Parallelism
5. Performance via Pipelining
6. Performance via Prediction
7. Hierachy of Memories
8. Dependability via Redundancy

Lecture 1 Slide 19PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

What is “Computer Architecture” ?

INSTRUCTION SET ARCHITECTURE

Operating
System

Processor Architecture I/O System

Digital Design

VLSI Circuit Design

Application

Compiler

Le
ve

ls
 o

f
Ab

st
ra

ct
io

n

low

high

! Key: Instruction Set Architecture (ISA)
! Different levels of abstraction

Lecture 1 Slide 20PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Levels of representation in computers

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine
Interpretation

temp := v[k];
v[k] := v[k+1];
v[k+1] := temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Lecture 1 Slide 21PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Compile-time and Run-time

Lecture 1 Slide 22PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

What is “Instruction Set Architecture (ISA)”?

! “. . . the attributes of a [computing] system as seen by the programmer, i.e.
the conceptual structure and functional behavior, as distinct from the
organization of the data flows and controls the logic design, and the
physical implementation.”

!Amdahl, Blaaw, and Brooks, 1964

ISA includes:-
! Organization of Programmable Storage
! Data Types & Data Structures: Encodings & Representations
! Instruction Formats
! Instruction (or Operation Code) Set
! Modes of Addressing and Accessing Data Items and Instructions
! Exceptional Conditions

Lecture 1 Slide 23PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Instruction Set Architecture (ISA)

! A very important abstraction
• interface between hardware and low-level software
• standardizes instructions, machine language bit patterns, etc.
• advantage: different implementations of the same architecture
• disadvantage: sometimes prevents using new innovations

! Modern instruction set architectures:
• ARM, Intel x86, RISC-V, Xtensa LX6/LX7 (used in ESP32)

Lecture 1 Slide 24PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Technology: Logic Density (processors)

Lecture 1 Slide 25PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Processor Speed Improvements

Lecture 1 Slide 26PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

A Typical Computer System with I/O

Lecture 1 Slide 27PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Characteristics

! Emphasis on simplicity and regularity
• 32-bit instructions

! Smaller is faster
• Small register file and fewer instructions

! Optimise for common cases
• e.g. include support for constants

! One ISA family with different variants
• Integer only, floating point, 32-bit/64-bit etc.

! Open-source (up to a certain extend)

Lecture 1 Slide 28PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

ESP32-C3 Microcontroller – Chip, module, board

Lecture 1 Slide 29PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Lab 0 – Setting up the Development Environment

! Follow instructions at the following Github page:
https://github.com/EIE2-IAC-Labs/Lab0-devtools.git

! You need to install and learn to use the following tools:
• VS Code – the Integrated Development Environment (IDE)
• Verilator – compile SystemVerilog HDL into C++
• RISC-V GNU toolchain – open-source tools for RISC-V including compiler,

assembler, simulator etc.
• gtkWave – view waveforms generator by Verilator model for debugging
• Git and Github – to record your work and your design (for assessment)

! Optional but useful to learn and install:
• Linux commands – only basic ones
• Markdown language (MD) – used with Git, Github
• Obsidian – Cross-platform open-source note taking tool
• Make utilities – used to compile and manage software build
• Bash – basic scripting language all EIE students should know

https://github.com/EIE2-IAC-Labs/Lab0-devtools.git

Lecture 1 Slide 30PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

8 most useful Linux Commands

Lecture 1 Slide 31PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic Markdown Syntax

Lecture 1 Slide 32PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic Markdown Syntax

Lecture 1 Slide 33PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Obsidian – Best note taking app?

